- S. K. Klimenko, N. M. Yartseva, M. N. Berezhnaya, M. E. Stankevich, and V. G. Kharchenko, Z. Org. Khim., 10, 2206 (1976).
- 3. G. N. Dorofeenko and P. I. Zhungietu, Zh. Obshch. Khim., 35, 963 (1965).
- 4. V. G. Kharchenko, L. I. Markova, and K. M. Korshunova, Zh. Org. Khim., 12, 663 (1976).
- 5. V. M. Mel'nik, M. Yu. Kornilov, A. V. Gurov, and B. M. Gutsulyak, Zh. Org. Khim., 18,
- 1460 (1982).
- 6. A. Maguestian, V. Havevbeke, J. J. Vanden Eynde, and N. de Pauw, Bull. Soc. Chim. Belges, <u>88</u>, 671 (1979).
- 7. V. G. Kharchenko, L. I. Markova, N. S. Smirnova, K. M. Korshunova, and G. I. Rybina, Zh. Org. Khim., <u>18</u>, 2184 (1982).

FREE-RADICAL REACTIONS OF 2-ETHOXY-1, 3-OXATHIOLANE

A. Taganliev, L. Z. Rol'nik, E. V. Pastushenko, S. S. Zlotskii, and D. L. Rakhmankulov

UDC 547.279:541.515

Homolytic reactions of 2-ethoxy-1,3-oxathiolane in the presence of benzoy1 peroxide and tert-buty1 peroxide in chlorobenzene have been studied. The principal reaction products are diethy1 monothiocarbonate and 1,3-oxathiolane-2-one. The yields and ratios of the products are temperature-dependent.

It has previously been shown that straight-chain and cyclic orthoesters and their nitrogen analogs are converted in the presence of radical initiators into straight-chain and cyclic carbonates and dialkylcarbamate esters, respectively [1, 2].

We have examined for the first time the liquid-phase homolytic reactions of the analogous 2-ethoxy-1,3-oxathiolane (I) on treatment with benzoyl peroxide (II) and tert-butyl peroxide (III) in chlorobenzene. Under these conditions, (I) affords in parallel diethyl monothiocarbonate (IV) and 1,3-oxathiolan-2-one (V).

In the absence of an initiator, (IV) and (V) were not formed.

The experimental results on the conversion and yields of the products of the free-radical reactions of 2-ethoxy-1,3-oxathiolane are given in Table 1.

TABLE 1. Yields of Products of Free-Radical Reactions of (I) [concentration of (I) 4.0, (II) 0.1, and (III) 0.3 mole/liter; solvent chlorobenzene]

Reaction conditions			Concentration, mole/liter			Conversion	Yield on (I) reacted, %	
tempera- ture, °C	initiator	time, h	I	IV	v	of (I), %	ıv	v
80 100 120		5 4 2	3,2 2,0 2,4	0,45 1,30 1,05	0,15 0,4 0,20	20 50 40	56 65 60	20 20 12

Ufa Institute of Petroleum, Ufa 450062. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 919-920, July, 1985. Original article submitted March 2, 1984. TABLE 2. ¹H NMR Spectra and Physicochemical Constants of 2-Ethoxy-1,3-oxathiolane (I), Diethyl Monothiocarbonate (IV), and 1,3-Oxathiolan-2-one (V)

Compound	Bp, °C	n _D ²⁰	d4 ²⁰	δ , ppm from HMDS					Coup i- ing
	(mm Hg)			1	2	3	4	5	const., Hz
⁴ ⁰ ⁰ ⁰ ⁰ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	70 (10)	1,4660	1,1103	1,12 t	2,80— 3,10 m	3,48 q	3,90— 4,20m	6,16 s	7,0
$c_{H_3}^2 c_{H_2}^4 o_{CSCH_2}^3 c_{H_3}^1 c$	157	1,4478	1,0125	1,25t.	1,26 t :	2,78 q	4,17 q		7,3
2 1 5 7 8 9	110 (9)	1,5126	1,3472	2,75— 3,15 m	3,92— 4,24m				

EXPERIMENTAL

2-Ethoxy-1,3-oxathiolane (I) was obtained as described in [3]. The purity of the thiolane (I) was checked by IR spectroscopy, and was not less than 98%. Products (IV) and (V) were isolated on a PAKhC-08 preparative chromatograph with a thermal conductivity detector, column 300 \times 0.3 cm, carrier gas helium, flow rate 10 liters/h, column temperature 170°C, evaporator temperature 300°C. Chromatographic phase, 25% Apiezon-L on Chromatone NAW. The structures of the reaction products were established by their PMR spectra (Table 2). The spectral measurements were made on a Tesla BS-497 (100 MHz).

LITERATURE CITED

- L. L. Kostyukevich, S. M. Kalashnikov, E. V. Pastushenko, S. S. Zlotskii, and D. L. Rakhmankulov, Zh. Org. Khim., <u>17</u>, 1858 (1981).
- 2. D. Kurbanov, E. V. Pastushenko, S. S. Zlotskii, and D. L. Rakhmankulov, Khim. Geterotsikl. Soedin., No. 12, 1614 (1983).
- 3. S. Tanimoto, T. Mikaye, and M. Okano, Bull. Inst. Chem. Res., Kyoto Univ., <u>55</u>, No. 3, 276 (1977).